
DOCUMENT RESUME

ED 482 075 IR 058 761

AUTHOR Breiteneder, Christian; Platzer, Hubert; Hitz, Martin

TITLE A Re-Usable Software Framework for Authoring and Managing Web
Exhibitions.

PUB DATE 2001-00-00

NOTE 15p.; In: Museums and the Web 2001: Selected Papers from an
International Conference (5th, Seattle, Washington, March 15-17,
2001); see IR 058 756.

AVAILABLE FROM Archives & Museum Informatics, 2008 Murray Ave., Suite D,
Pittsburgh, PA 15217; e-mail: info@archimuse.com; Web site:
http://www.archimuse.com/. For full text: http://www.archimuse.com/
mw2001/.

PUB TYPE Reports Descriptive (141) Speeches/Meeting Papers (150)

EDRS PRICE EDRS Price MF01/PC01 Plus Postage.

DESCRIPTORS Authoring Aids (Programming); *Computer Software; *Computer Software
Development; Databases; *Exhibits; Foreign Countries; Hypermedia;
*Museums; World Wide Web

IDENTIFIERS Austria (Vienna); *Virtual Museums

ABSTRACT

In the course of a Web development project for the Museum fur
Volkerkunde in Vienna, ViEx, a reuse framework supporting authoring and managing
hypermedia exhibitions, has been developed. The framework consists of three major
components: a relational content database, a corresponding browser based editing
interface, and a Web page generator which creates the final Web exhibition. Strict
separation of content, structure and layout information promises ease of maintenance,
especially in the context of multiple versions of the same exhibition to cope with
different presentation languages and client platform dependencies. This paper
discusses goals and motivation for the development of the framework; presents the
framework itself; puts the framework development into the perspective of the project
history; and discusses some advantages and drawbacks of the approach taken. In a final
section the authors' current work related to ViEx is briefly described. Includes three
tables and six figures. (Author/AEF)

Reproductions supplied by EDRS are the best that can be made
from the original document.

Register
Workshops
Sessions
Speakers
Interactions
Demonstrations
Exhibits
Events
Best of the Web
Key Dates
Seattle
Sponsors

ACeMI
Archives & Museum Informatics
2008 Murray Ave.
Suite D
Pittsburgh, PA
15217 USA
info@archimuse.com
www.archimuse.com

ckSearch

A&MI

Join our Mailing List.

primacy.

Updated: 02/27/2001 11:35:24

PAPERS
Museums and theWeb 2001
A Re-Usable Software Framework For
Authoring And Managing Web Exhibitions

Christian Breiteneder, Hubert Platzer,, Vienna
University of Technology, Martin Hitz,
University of Klagenfurt, Austria

Abstract

In the course of a Web development project for the Museum far
Völkerkunde in Vienna, ViEx, a reuse framework supporting
authoring and managing hypermedia exhibitions, has been
developed. The framework consists of three major components: a
relational content database, a corresponding browser based
editing interface, and a Web page generator which creates the
final Web exhibition. Strict separation of content, structure and
layout information promises ease of maintenance, especially in
the context of multiple versions of the same exhibition to cope
with different presentation languages and client platform
dependencies.

Keywords: software re-use, exhibit database, authoring tool,
virtual exhibition

Introduction

1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

D. Bearman

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

Of This document has been reproduced as
received from the person or organization
originating it.

CI Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Authoring and managing a hypermedia exhibition is a tedious and time-
consuming task requiring a set of skills not readily available in a
museum context. In order to liberate curators and exhibition designers
from the computer-centric tasks as much as possible and to reduce the
resources spent for every new virtual exhibition, we developed ViEx
("virtual exhibition"), a software framework intended to introduce
systematic reuse into the domain of Web based exhibitions.

The framework is based on building blocks that cover all structural parts
of a Web document, e.g. title, various paragraph types, special character
types, as for example, proper names and foreign words and media types
like videos, panoramas or images. Some of these types are complex
objects themselves, since they consist of a set of more atomic entities.
Layout information is available in form of templates that may be nested
to define a more complex page.

All building blocks and their instances are stored in a relational
database, and pages may be rendered dynamically according to their
content and layout definition. In addition, the framework comprises
modules allowing for the evaluation of user satisfaction and behaviour,
like, for example, guest book and a comprehensive statistics module
and a special navigation module allowing for the pictorial representation
and arrangement of users' favorite pages.

BEST COPY AVAILABLE

file://E: WW2001 \paperareiteneder\breiteneder2.html 5/19/2003

ViEx has been developed and tested within the project of a virtual
exhibition on Bhutan (http://Nww.bhutan.at). In principle it has been
designed to be platform independent. The current server is running
under Solaris and utilizes PHP and Oracle 8i. The reusability of the
framework is currently being tested in the context of a site for
Archaeology@Austria.

The remainder of this paper is organized as follows: In the following
section, goals and motivation for the development of the framework are
discussed. In Section 3, the framework itself is presented. Section 4 puts
the framework development into the perspective of the project history
and discusses some advantages and drawbacks of the approach taken.
Finally, in Section 5, our current work related to ViEx is briefly described.

Goals and Motivation

Creating an exhibition web site for a museum is a major software
development undertaking which may easily go beyond the resources
and capabilities of a small or medium-sized museum. For example, the
virtual exhibition project, Bhutan Fortress of the Gods,
(http://www.bhutan.at, Breiteneder et al., 2001) which gave rise to the
development framework presented in this paper involved a set of project
specific roles. From the category of staff and the number of physical
people assigned to each role (stretched to varying degrees), we can
easily conclude that - at least as of today - such a project falls outside
the main competence and self-image of a museum.

Table 1: Staffing overview for http://www.bhutan.at

Role in Project Category #
Project management Development team 1

Text authoring Museum 2
Content advisor Museum 1

Quality assurance Museum 1

Translation Translators 4
Screen design Designer 1

Page editing Museum 1

Picture editing Designer + Museum 2
Video editing Development team 1

3D modeling Development team 1

Panorama modeling Development team 1

Software design Development team 3

Software implementation Development team 5

Test (functionality, usability) Development team 5

System administration (development
site)

Development team 1

Outsourcing as the obvious solution to the problem of lack of human
resources complicates communication during the development phase
and impedes ongoing content maintenance after the development
phase, as most maintenance requests will have to be directed to the
development team which as a (not unlikely) worst case scenario - may
not even exist as such anymore.

3
file://E AMW2001 \papers \breiteneder\breiteneder2.html 5/19/2003

In this situation, employing a reuse framework such as ViEx (presented
in the next section) may result in the following advantages:

It enables the museum-based project team together with the art
designer to elaborate a complete specification of the exhibition
site within the framework provided. This avoids the need for
continuous feedback from the development team, thus eliminating
significant portions of the communication overhead and focusing
the development team on its main task, namely implementing the
site according to the specifications provided.
It shifts development work to a higher level of abstraction: instead
of "coding" Web pages in HTML, the main tasks consist of editing
and structuring content liberated from layout questions.
It supports content maintenance in the post-development phase,
i.e., it enables museum staff to consistently modify the exhibition
without the need to resort to the development team.
It simplifies the software development portion of the project due to
"pre-fabricated" built-in features which can be used as-is and
need not be implemented from scratch (concept reuse). For
instance, the interplay between images, pop-up legends, and
zoom-windows for higher resolution versions of an image is
generated by the framework.
It allows systematic reuse of content building blocks in different
contexts within the same virtual exhibition (data reuse). Moreover,
export interfaces can easily be established in order to reuse
content material outside the project (e.g., consider XML exports).
By all the above, it saves development time and costs.

The main benefit, however, will be the fact that a framework enforces
well-structured and consistent building blocks for the Web presentation.
Considering again size and complexity of the project team as sketched
in Table 1, any site composed of individual, more or less "hand made
Web pages is nearly guaranteed to end up in complete chaos with the
typical symptoms of inconsistent hyperlinks, aberrations of page layout
etc. The corresponding maintenance overhead - in this case arising
already during the development phase - will consume essential project
resources. From the authors' experience, such effects are likely to affect
even mid-sized projects of about 20 to 50 Web pages.

The advantages discussed above will be especially beneficial in the
case of temporary virtual exhibitions where high start-up costs may
challenge the feasibility of the entire project.

In the specific case of a database-supported framework like ViEx, the
existence of an object database containing descriptions and media files
for all exhibits needed in the exhibition under construction would
constitute an important additional asset, as a significant portion of
editorial work could be settled by a straightforward export-import script
pre-loading the framework's project database.

ViEx -- A Framework for Virtual Exhibitions

The ViEx framework consists of three major components: a content
management system, its underlying content database, and a set of
layout templates. In addition, a parser was also implemented to support
the transition between the older file system based framework ViExFs (cf.
Section 4) to the current framework operating on a relational database,
by transforming Web page files into sets of corresponding database

4
fi le ://E: WW2001 \papersthreiteneder\breiteneder2.html 5/19/2003

entries. This auxiliary component may also be considered a "feature" of
ViEx because it can be seen as an alternative input channel into the
content database.

This section describes the ViEx framework in some detail. We begin with
a brief summary of the features of a ViEx-based exhibition and present
the main components of ViEx in subsequent subsections.

Supported Features

Any software framework designed for reusability will be more effective,
the better its application domain is understood and the more specific the
framework fits its application domain (cf. standard literature on software
reuse, e.g. Biggerstaff & Perlis, 1989). Thus, when employing such a
framework, the trade-off between generic applicability and reuse
potential must be carefully considered. To this end, it is important to
briefly summarize the features of a virtual exhibition realized on the
basis of ViEx. For a more in-depth treatment see Bhutan - A Virtual
Exhibition http://www.bhutan.at.(Breiteneder et al. (2001).

The content of a ViEx exhibition is organized in a layout-independent
manner. Building blocks may be pages (content aggregates consisting
of other building blocks), pictures with descriptive information, video,
audio, text (individual text and standard text building blocks), glossary
entries (currently two categories: foreign words and proper names),
script building blocks (e.g., fader texts), and panoramas (possibly linked
to descriptive information). Table 2 summarizes major attributes
assigned to these building blocks. For all text-based information, the
respective language is another attribute stored in the database (not
shown in Table 2).

Table 2: Content building blocks and their major attributes

Content
Building
Block

Attributes

Page type of page (chapter,
subchapter...), template, window
title, document title, color code, ...

Picture Image URL, zoom image URL, title,
legend, display size

Video, Audio,
Panorama

URL, title, legend, plug-in, size,
quality...

Text type (i.e., style class like header,
paragraph...), content

Glossary
entry

text, category, short description
("tool tip"), long description
(glossary page)

Script
building
block

text

As navigation mechanisms, ViEx supports manually defined ad hoc
hyperlinks, systematic hierarchic links (path to the current page, children

5
file://E: WW2001 \papers \breiteneder\breiteneder2.html 5/19/2003

emanating from the current page etc.) for navigating through the
exhibition according to the underlying book metaphor, local links to
navigate within a page, a site map containing thumbnails of the upper
levels of the hierarchy, a hierarchy browser (available in three flavors:
pull-down-menus, table of contents, tree controls), a search facility, an
exhibit index, pop-up windows displaying descriptive information linked
to pictures, and zoom windows displaying pictures at a higher resolution.
In addition, there are two different tour concepts available: a slide show
consisting of a predefined sequence of pictures with legends which are
continuously presented (fading over each other), and a guided tour
taking a sequential path through the exhibition, briefly explaining its
different parts. Last but not least, registered users get access to a
feature called lookmarks enabling them to create their own catalog of
the exhibition by distributing thumbnails of pages of interest in a three
dimensional space and grouping them according to subjective
organizing principles. (The three dimensional arrangement and the
visual cues based on thumbnails are deemed to provide a much better
recognition / retrieval rate compared to ordinary bookmarking.)

The book metaphor mentioned above serves as the major structuring
mechanism in ViEx. Its strict hierarchic structure is deemed to reduce
the likelihood for a visitor to the virtual exhibition to get "lost in
hyperspace", especially since visitors are assumed to be able to
relatively quickly construct a mental model of the Web presentation due
to their acquaintance with exhibition catalogues and the like.

Part

1

{ordered}

Chapter

{ordered}

refersTo

Sub Chapter

{ordered}

Section

{ordered}

Sub Section

Home Page Entry Page

AlivigationPage

IMbPage

CbatentPage

{ordered}

Sub Sub Section

ZoomPnimation SiteMap

Fig.1: Relationships between ViEx web pages (in UML)

The six (at most -- note the cardinalities indicated by * in the UML
diagram in Fig.1) hierarchy levels represent the main information-
bearing content pages. Besides them, a few other, secondary variants of
the abstract concept "web page" exist for rather technical purposes.

ViEx supports multiple coexisting versions of the same exhibition.
Specifically, three versioning dimensions can be distinguished:

Static vs. dynamic pages: During the presentation design phase,
pages generated on demand are usually preferred to static

6
file://E: WW2001 \papers \breiteneder\breiteneder2.html 5/19/2003

BEST COPY AVAILABLE

pages, because changes in the "look & feel" of the site are
immediately made visible on all available pages for persons
working on the design prototype. When the design has stabilized,
one may want to switch to static pages either for performance
reasons or in order to prepare an off-line version of the exhibition
on CD-ROM. Dynamic ViEx pages are coded in PHP.
Different technological levels: Taking into account the diversity of
client platforms now in use and their mutual incompatibilities, it is
necessary to customize a Web presentation to several levels of
browser technology. As a minimum requirement, a "high tech"
version with contemporary ("cool") features and a 'low tech"
version suited to old or low-end browsers should be provided.
Language of presentation.

Content Database

The content database is implemented using a relational database
management system and contains both the content and structure of the
virtual exhibition, but excludes low-level layout information. This
separation represents a standard design goal for complex Web sites,
because it guarantees consistent presentation of the content throughout
the whole Web site. The database oriented approach of ViEx pushes
this design goal to an extreme: As no low-level formatting information
can be entered into the content database, the separation of content and
layout follows as a consequence.

The data model underlying the content database is given as a UML
diagram in Fig. 2 . As can be seen from Fig. 2 the core concept of the
content database is the abstract entity building block which represents a
unit of information to be presented and manipulated as a whole. The
specialization hierarchy emanating from classBuildingBlock
distinguishes between atomic entities and complex entities represented
by containers consisting of other building blocks. Atomic entities may be:

homogeneous portions of text (with no intermingled markup) in
various paragraph types and optional special character distinction
(e.g. for proper names and foreign words),
pictures consisting of a small image, a caption, a more detailed
description and a reference to a larger copy
other media like videos and panoramas treated in a similar way
(not shown in the figure), and
various kinds of hyperlinks.

A content page is associated with an externally stored layout template
divided into so-called "slots" (class Content in Fig. 2) which are to be
filled by building blocks. Slots may in turn be subdivided into "subslots",
where the layout of each subslot is again defined by a layout template.
The hierarchy specified in Fig.1 is resolved as a recursive parent-child
relationship between content page entities. For each content page,
some layout information in the form of attribute-value pairs (such as
color schemes or main titles) can be specified and is propagated down
the page hierarchy by the page generator (hence the class name
Inheritance Data). Thus, every page in the hierarchy takes this
information from higher level pages, but it can also be assigned
corresponding data of its own which overrides the "inherited" default.

7

file://E: WW2001 \paperareitenederthreiteneder2.html 5/19/2003

Building 13100.Di...us

BBNa 11]

P.1.1.ribJc11]

Value

Ling,KP2 Ii]

Content

%geld 112]
BBNa
SkiName
RasItion pi

InherkanceDaa

Regek1111

PAribute 11]

Value

Lo'113,09e 11]

RageLkelaDaa

paae" 111
DName 11]

LA Dld 12]

SpeciarTedInfo

SpeciaIT00.111

larl9Loge 11]
Type
Variants
Explanation
ExplanationDelails
racsimile

TestBB

1 BBId11]
Impeders

Type

1..n BB" 11]
BBNO12]

LaNILsKle 12]

Ca.e9a/
1111'

targaBB
SuPSIats

ISIotName 11]

P09,1" II/
Tem plate

XLi

BBk111]

LIR L

'6{01}

Link

BBId

Codeine,

IL*. ZLiqt,

BBId 11] BBId II]
TargetPaaeki PictureBBId
TargaBBId SW las

1 1

-

laraa
CatentPage

1
1]

Tem lilac
Type
Parentld
Raskion

refersTa

parent

child I n

0..1

IdetaData BuildingBbcklielaDala

MEW 11

DCartent 11]
Language 11]

BBNa 11]

1..n 0..1
Lil D Name 11]

LA 01:1 121

0..

0

nu pi
Type

CanainerCants

BBId 11]

CarlainerBBId 12]
Paskian

.1

0..1

Padre
BB1:111]

aptionSBNa
LegendBBNa
Hakes

idth

mURL
U L

OnailU R L
ram

Generalizations rod

associations SPICWVI

ford:101=km purpzsas
0.4- all' inherlai
aVibalas and reference
attributes OrC plaly

Fig. 2: Data model of the content database (in UML with database
key designators in brackets)

When the exhibition is generated from the content database, the
resulting page format is determined by

the position within the page hierarchy at which the page resides
which affects the inheritance mechanism explained before and
the generation of structural navigation links,
the layout template assigned to the page,
templates possibly assigned to the slots of the template,
a cascading style sheet (which is dynamically selected depending
on the client's platform),
the formatting strategy encoded into the generator for each type
of building block,
as well as additional layout information assigned to selected
building blocks (class BuildingBlockExtras).

Front end (input and editing interface) and back end (pagegenerator) of
the content database together form the content management system
described at the end of this section.

Layout Templates

Layout templates reside in the file system (outside the content database)
and define the principal layout of each type of page. Changing a layout
template modifies the look & feel of the exhibition without modifying its

BEST COPY AVAILABLE

file://E AMW2001 \paperareiteneder\breiteneder2.html 5/19/2003

content and logical structure.

Templates are "stub pages" with fixed HTML, includes etc. combined
with special markups designating slots to be filled from the content
database. The syntax of these markups is

<!-- #BeginEditable "Slot Id" -->

and is taken from Macro Media Dreamweaver in order to allow employing
Dreamweaver as a comfortable template editor. The generator replaces
this markup with the building blocks selected from the database via slot
identification Slot Id and the identification of the page under construction.

Besides the content oriented slots mentioned, there are also so-called
"technical slots" with predefined semantics which are used to designate
the position of standard page elements like headings and navigation
blocks within the page.

For instance, a typical template taken from http://www.bhutan.at
contains the following slots:

a) Technical slots

Page title: The browser's window title. Content explicitly given in
the content database.
Page meta-information: HTML meta information (invisible).
Content explicitly given.
Script: Includes client side scripting files (e.g., Java Script) with
functions taking care of CSS selection according to the client
platform, window management, and pop-up handling. Content
generated.
Document title: Text or image. Content explicitly given.
Color scheme: Color code or image. Content explicitly given or
inherited from ancestor pages.
Path: Navigation element consisting of titles of all ancestor pages.
Content implicitly given (taken from ancestor pages).
Navigation ("nav", cf. the table below): One of two possible types
of hierarchical navigation menu depending on the type of page.
Content implicitly given.
Pop ups: Place holder for pop-ups used as image legends. Must
be last element in the template. Content generated.

b) True content slots: The standard layout for "Bhutan -- Fortress of the
Gods" is based on the following HTML table (with slot names):

Table 3

rowl-left [owl
center

[owl -right

rowl
row2-left jcrow2- Irow2-right

enter
row2
row3-left Irow3-

'center
Irow3-right

row3
1 i

9
file://E: WW2001 \papers\breitenederthreiteneder2.html 5/19/2003

Irow4-left rw4- Irow4-right I

center nav

All these slots may be assigned simple text building blocks, containers
holding nested building blocks, or subslots with corresponding
subtemplates. This latter feature enhances the range of application of a
template: Instead of designing completely new templates, many
variations can be incorporated into one and the same template by
means of the subtemplate concept.

For technical reasons, ViEx only supports one level of subtemplates;
i.e., subtemplates nested within subtemplates are not possible.
However, for the virtual exhibition "Bhutan --Fortress of the Gods" this
restriction did not impose any undue design limitations.

It should be noted that all content which depends on the page type only,
i.e., which is identical for all pages using the same template, might also
be kept in the template itself (and not in the content database).
However, such an approach may jeopardize important features of the
framework such as creating a presentation in a different language etc.

Content Management System

The content management system (CMS) consists of the content
database input and editing interfaces and the page generator. It allows
creation, maintenance and deletion of pages. In its current version, it
supports ODBC, Oracle's OCI and MySQL databases, thus covering all
major production platforms.

The database input and editing interface is browser based and provides
features to manipulate content, structure and layout of the web
presentation under construction by modifying respective database
contents. Fig. 3 shows a screenshot of the hierarchy editor based on
tree controls and an editing menu. This component is used to navigate
and/or modify the hierarchic structure of the exhibition. From here, the
main content edit window may be reached. In Fig. 4 , building blocks 1,
2, and 3 of Container 11 (itself an aggregate building block of type
"baui") of page "Infrastruktur Baudenkmäler" of a German web page
are being edited. The structure of the edit window changes dynamically
depending on the type of content edited.

file://E: WW2001 \paperareitenederThreiteneder2.html 5/19/2003

a Explorer - Content Manage... 11 sa

Arch test cms v220 Home
0Teit I hubert
ElTeit 2 hubert
ElTeit Martin

Arch CMS Demo
utturgeschichte
nfrastrr.1-4

er Hord
Sonstiges edit

properties

delete
copy

structure
data

move path
move page

add child

le Internet
Fig. 3: CMS: Hierarchy editor

.3 et:Window: Infrosoullur Baudlonloraier Microsoft Ink:mei Emplofci

Co Itai lorrypc[bn updric

r deice Sib si I I

',Jae

r c. io St.Irnt I

rs-T-Eyj

Jse 1 ex7b5Lzkein
r Cui.a tuti I TtAIS

az ApirEly"7121 iM 1I.rt
II e. A le e el ,ee

K e deuaulbtutl, u mi iii d de>
Dace iu ndaaics. :5kann..ie keirn
C3nuniinei :avlellnd a)

L nk :4Lin.(
I hild%e I it n

A

R. pro ;ode.

O Btd Arivilitts<av.el 'iu Cuuu,U.rri

[J70 7 ocb aLstein L nk I xLin< z_i -k
r Uctra rirI i G:-:19 Irnaco I rtm

OM' a act ielcuctoxrden.

ioinletrnri

Lpiebe, k.bri t I

07. lIDC 170r IS oe I I

Fig. 4: Editing a page of Archeology@Austria

Fig. 4 illustrates not only the look & feel of the user interface for content
entry but also the main disadvantage of the required pseudo-atomicity of
the content database: As there is no formatting allowed within text
building blocks, the granularity of text building blocks is somewhat

3EST COPY AVAILABLE

1 1
file://EAMW2001 \papers\breiteneder\breiteneder2.html 5/19/2003

smaller than mere re-use considerations would require. For instance, as
text portion "Bauperiode 2" is used as a hyperlink to page titled "Das
Bad des Auxiliarkastells von Carnuntum", it must be entered as a
separate building block (no. 2), although from a semantic perspective,
building blocks 1, 2, and 3 together form a logical unit (i.e., a paragraph).

As mentioned before, it is possible to associate some layout information
will different types of building blocks which will be taken into
consideration by the page generator. The corresponding CMS module
(style editor) is shown in Fig. 5 .

l'.i ipc

n...t1: ,erce IONIA e:

e--4

Thwe pas in vary dh raiz
IN, r see eelne.,,ei I 114.1..$1Illiikee-1.1e .1.1 mem p-

t ! -1.

1741 1

mc 1 keel

141

1U 1 1' DC: Cro 471 : Sj..*

1*.
F--- [tree !leek .1.1.11%,:. .r-.

.r.
LI! d

Fig. 5: Editing styles associated with building block types

Columns "tag" and "vars" define the HTML element to be generated for
building blocks of type "type". "vars" contains variable references (11",
"$2", etc.) which are to be substituted by corresponding database
attributes listed in column "db-vars". These attributes are found
elsewhere in the database. (Column "pos" is relevant for nested blocks
only.)

Last but not least, a preview window allows the user to immediately see
the outcome of the page generator run (Fig. 6). In such a window,
special icons offer links back to specific edit windows (edit picture, edit
container, edit text building block, edit styles, edit template slot. Cf. the
bracketed icons in Fig. 6 -- clicking on the one with the tool tip displayed
would open the picture editing window to modify the presentation
parameters of the image of Guru Rinpoche).

BEST COPY AVAILABLE
12

file://E: WW2001\papers\breitenederThreiteneder2.html 5/19/2003

Ph,,it...E.aiv Tr.pd Nicuork. Inl.noto

r:

L.

;M: . as. . v .. i

. 4 ..1%-.110.11. v..; r..

. .-
r ph rt-Ir. m 1-1e qv* ,rel te

..
hj.J. .v T.6v g i. 4.1 ...OA kki v 0.

grid I 111.1..b. I.Lx Ev..1 i. lay E s
. I A.... r.1

IllegmrPo I

E B.,' 1.re ils.5.n VAsri J.,
rd I I,IiIIn.A 1 I of

r.

I II AO 14WP.1% Pol...
t A-11. ..(Preye -arh -re

vreeld -W.. I

I -6 rovikunri,M.I.r. elprare IMMO/NIL tovairoArAFte0.0 Mnof Mire pir.:1,1tMil MI III I Irhonnt

Fig. 6: Preview of generator run

The page generator represents the back end of the content
management system, producing dynamic Web pages (a static version
can be generated on demand in a post-processing step) according to
the formatting rules given earlier. It is responsible for a homogeneous
treatment of the different kinds of building blocks (e.g., generating the
code necessary for the interplay between images, captions,
corresponding pop-up legends and zoomwindows), and consistent
navigation scheme, both within a page and within the web site (for deep
hierarchies, managing the complex navigation menus is in itself a
nontrivial task which is hard to accomplish manually, especially when
the structure of the hierarchy is changed).

The generator is also capable of creating different versions of an
exhibition as discussed in Section 3. For example, "Bhutan -- Fortress of
the Gods" (http://www.bhutan.at) exists in German and English, both in a
"high tech" and "low tech" variant.

Project History and Reflection

The project which gave rise to the development of the framework
presented in this paper begun as a research project to explore different
approaches to virtual exhibitions, funded by the Austrian Federal
Ministryof Education, Science and Culture (Breiteneder et al., 2000).
However, as a by product, a production release of a virtual variant of a
well-known and internationally successful exhibition of the Austrian
Museum far Völkerkunde on Bhutan had to be developed. In this
situation, the project partners opted for a dual approach: A conventional
development track based on manually created dynamic Web pages was
chosen in parallel to the development of the more advanced database
based infrastructure presented in this paper (ViExDB or ViEx, for short).
The first track was needed to guarantee a working product, while the
second track was aimed towards a reuse environment for future virtual
exhibitions.

During the development of the Web site along the conventional track,
strong emphasis was laid on a well structured project and software
design suited for a mid-sized project. Thus, after a short exploration
phase, a set of tools (PHP3 as scripting language, homesite and BBedit

13
BEST COPY AVAILABLE

file ://E: WW2001 \papers \breiteneder\breiteneder2.html 5/19/2003

as web editors, m4 as macro processor to introduce parametric text
substitution etc.) to be employed alongside with corresponding strict
coding and naming conventions were established, and the file system
based version ViExFs of the framework was born. When its design had
matured so far that a successful completion of the development project
could be foreseen, all structural decisions made were frozen and the
database oriented approach was started in parallel. From the modeling
decision made thus far, the database scheme was deduced and the
page generator was developed. Meanwhile, conventional development
of the web site was progressing within the ViExFs framework, so that a
content transfer tool was needed to initialize the database content from
the web pages in ViExEs. The development and employment of a
respective page analysis tool helped to verify and optimize the database
model and also pointed out some inconsistencies within ViExFs which
were corrected on the fly. Then, the editing front end was implemented
as a working prototype, and finally the whole Web site was loaded into
the database version of ViEx and manually polished. From this dual
development experience, we are now able to contrast the two
approaches taken.

In the file-system based version of the development framework, each
building block was realized as a file in directory tree with strict localizing
and naming conventions. The unit of work was defined as editing such a
source file which usually took place on a client followed by some kind of
data transfer (e.g., ftp) to the web server. With a Web-based editing
interface, some edits could also be done directly on the Web server.
Thus, a maximum of content creation flexibility was achieved, and all file
system tools available on the server (under Unix) could be used (e.g.,
access right configuration, global search and replace etc.). In particular,
pages systematically generated via PHP3 and m4 could easily be
combined with some hand crafted individual pages where necessary.
Also, authoring and configuration management activities could evolve
with the complexity of the web site under construction.

The disadvantage was that many interfaces had to be mastered by the
editing staff and that there was no real control whether all conventions
established by the project team were observed (as the main portion of
the content editing work was done by a single person with sufficient self-
discipline, this aspect did not create a lot of problems in our project).
Moreover, data transfer from the client workstation to the web server
was not secured.

In the database version of the framework, content was moved from
individual files into tables of a relational database system. The
corresponding conceptual model guaranteed clear separation of content,
structure and layout. There is only one editing interface (cf. the previous
section). Modest use of relational features allows the employment of a
wide range of DBMS from mySQL to Oracle 8. As the editing interface is
somewhat more formal than for ViExFs, there were fewer accidental
changes of content. On the minus side, there is the higher complexity of
the editing task (due to the atomic nature of data), even though content
editing performance seems to constitute a critical success factor for
such a project. We also had to realize that late modifications of the
underlying conceptual model cost a relatively great deal of work (an
experience which seems counter-intuitive to classical arguments in favor
of database technology). Thus, the database-oriented approach seems
to be especially promising if:

14

file://E: WW2001 \papers \breiteneder\breiteneder2.html 5/19/2003

the structure of the planned exhibition is compatible to the
framework, i.e., it can be mapped onto the conceptual model of
the framework,
the exhibition project exceeds a certain complexity which allows
amortization of setup costs (installing and getting acquainted with
the tools, etc.),
all tools are already well-defined and ready for duty at the
beginning of the project,
an exhibit database exists which may be linked to the content
database presented here.

Conclusions and Ongoing Work

The primary project goal to develop http://www.bhutan.at to a fully
functioning Web site meeting all requirements of a production system
has put restrictions on the development of the prototype of a reuse
framework discussed in this paper. We will definitely need at least
resources equal to those spent so far on its completion to be able to use
it in full practice and in a wide variety of contexts. Since reuse of
software can only be proven by reuse, we have meanwhile tested the
framework in a feasibility study in the field of archaeology. Because the
participating archaeologists had different requirements from the ones to
be met for http://www.bhutan.at, minor adjustments were necessary to
increase the functionality available.

Currently, we are extending ViEx to be prepared for a much larger
project covering all Austrian archaeological museums and sites in one
Web portal. Since the total number of Web pages of this site will be a
magnitude higher than for Bhutan, we first have to evaluate and improve
the performance of ViEx for sites with more that 1000 pages. The most
important additional extensions of ViEx will cover:

support for XML,
support for metadata (RDF and Topic Maps) in order to move an
important step towards the semantic web,
support for multiple concurrent users and
the enhancement of editing features, as for example the splitting
of building blocks.

Moreover, we want to compare available content management systems
and to include some of the convincing additional features in our system.

References

Breiteneder, C., Hitz, M., Hon, M., & Platzer, H. (2000). Untersuchung
innovativer Hypermedia-Methoden zur Gestaltung virtueller
Ausstellungen am Beispiel "Bhutan -- Festung der Götter.
http://www.bhutan.at. Project report, Vienna University of Technology/
University of Klagenfurt / University of Vienna, October 2000.

Breiteneder, C., Hitz, M., Platzer, H., & Stockinger, J. (2001). Bhutan
A Virtual Exhibition. In D. Bearman & J. Trant (Eds.) Museums and the
Web 2001 Selected Papers from an International Conference.
Pittsburgh, Archives & Museum Informatics, 2001.

Biggerstaff, T. J. & Perlis, A. J. (1989). Software Reusability (Vol. I:
Concepts and Models, Vol. II: Applications and Experience). ACM

15
file://E: WW2001 \papers \breiteneder\breiteneder2.html 5/19/2003

x

U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)

Educational Resources Information Center (ERIC)

NOTICE

Reproduction Basis

This document is covered by a signed "Reproduction Release (Blanket)"
form (on file within the ERIC system), encompassing all or classes of
documents firom its source organization and, therefore, does not require a
"Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may be
reproduced by ERIC without a signed Reproduction Release form (either
"Specific Document" or "Blanket").

EFF-089 (1/2003)

